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Abstract

The evolution of communication technology 
and the proliferation of electronic devices have 
rendered adversaries powerful means for target-
ed attacks via all sorts of accessible resources. In 
particular, due to the intrinsic interdependence 
and ubiquitous connectivity of modern commu-
nication systems, adversaries can devise malware 
that propagates through intermediate hosts to 
approach the target, to which we refer as trans-
missive attacks. Inspired by biology, the trans-
mission pattern of such an attack in the digital 
space much resembles the spread of an epidemic 
in real life. This article describes transmissive 
attacks, summarizes the utility of epidemic mod-
els in communication systems, and draws connec-
tions between transmissive attacks and epidemic 
models. Simulations, experiments, and ongoing 
research challenges on transmissive attacks are 
also addressed.

Introduction
In recent years, researchers have successfully 
borrowed several biological mechanisms from 
nature for devising efficient protocols and under-
standing their performance via the associated 
mathematical models, especially for cyber secu-
rity in communication systems [1, 2]. Inspired by 
epidemiology, this article investigates an emerg-
ing attack pattern, transmissive attack, featuring 
heterogeneous propagation paths and specific 
targets. Analogous to the spread of epidemics 
in nature, malicious codes act as viruses that 
are capable of infecting hosts (i.e., electronic 
devices) via various communication resources, 
and they can be stealthily transported by inter-
mediate hosts to reach the primary hosts (i.e., 
targets), which is similar to the biological mecha-
nism known as host specificity.

Inevitably, the proliferation of electronic devic-
es equipped with communication capabilities and 
the penetration of the Internet of Things have 
created ever increasing security threats that we 
call digital epidemics, which may be even more 
vital than actual transmissive diseases like Dengue 
fever, ebola, and SARS due to their cyber trans-
mission and dormant operation nature, and their 
induced loss in properties and privacy. It is worth 
mentioning that although the fragility of modern 

communication systems may seem to be shock-
ing news to the world, the severe consequences 
caused by digital epidemics have been foreseen by 
researchers [3–5]. In the past two decades various 
advanced communication technologies, such as 
cellular systems and wired and wireless networks, 
and tremendous user activities, such as online 
social networking and mobile applications, have 
constituted a heterogeneous but ubiquitous net-
work among users and devices around the globe, 
which is known to be a complex communication 
network [6] or a generalized social network [5]. 
Malicious codes are able to exploit these hetero-
geneous communication paths and intrinsic sys-
tem interconnectivity for propagation, and thereby 
compromise more devices.

By investigating recently discovered attack 
cases and system vulnerabilities, we present an 
emerging attack pattern named transmissive 
attack, where an adversary can leverage diverse 
communication paths and common communi-
cation protocols (e.g., the Internet of Things) 
to indirectly compromise a target (or a set of 
targets) that cannot be directly accessed by the 
adversary.

Furthermore, in order to increase the possi-
bility of reaching the target, transmissive attacks 
may camouflage their activities to elude detec-
tion rather than indiscriminately infesting as 
many hosts as possible. The specificity to tar-
geted attacks and heterogeneity in propagation 
paths distinguish transmissive attacks from well-
known Internet worms such as Code Red, which 
only exploits a single propagation resource (the 
Internet) and features indiscriminate attacks.

Figure 1 illustrates several possible means for 
the adversary to access the target.1 Consider the 
target to be a personal computer in an enterprise 
that is granted access to private employee/cus-
tomer databases or confidential corporate files, 
and all external networking connections to the 
target are prohibited. If the target is connected 
to other internal machines that connect to the 
outside world, the adversary can eventually reach 
the target by successive propagation. Pessimisti-
cally, even if all connections from other internal 
machines to the target are prohibited, the adver-
sary can still manage to approach the target by 
compromising the authorized user’s electronic 
devices, such as portable storage devices, wearable 
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devices, or health devices embedded in a human 
body equipped with communication capabili-
ties. In practice, all the adversary needs to do to 
launch a transmissive attack is simply release a 
malicious code (e.g., a Trojan virus), and then sit 
back and wait for the code to propagate among 
hosts (potential victims), via either cyber connec-
tion (e.g., phishing from the Internet) or human 
carrier (e.g., Bluetooth or WiFi direct reception 
from proximity), to create an indirect (i.e., multi-
hop) communication path for accessing the target. 
Moreover, after successful intrusion the adversary 
can erase its traces from the communication path 
(e.g., implementing a global timer for self-deacti-
vation) to reduce the risk of being uncovered. 

Inspired by biology, we use epidemic models to 
evaluate the consequences of a transmissive attack 
from a macroscopic system-level perspective. 
Analogous to disease transmission assessment, 
epidemic models categorize the hosts in a system 
into a few states to analyze the collective behavior 
of a system with parametric mathematical models 
(e.g., coupled state difference equations or Mar-
kov chains) for the purposes of status tracking, 
outbreak prediction, and further actions. As a first 
step toward analyzing transmissive attacks, we use 
epidemic models to investigate the probability of 
successfully compromising the target and quantify 
the risk of exposure with respect to time. We show 
that the trade-offs in time between the probabil-
ity of successful intrusion to the target and the 
associated risk can be characterized by epidemic 
models, thereby enabling security analysis.2

Transmissive Attacks in Practice
As illustrated in Fig. 1, one typical scenario of 
transmissive attack is that an adversary aims to 
approach a target by propagating through inter-

mediate hosts via all possible communication 
resources in a complex communication system. 
The purpose of such indirect propagation can 
be that direct access from the adversary to the 
target is unavailable, or the adversary attempts 
to hide his/her true identity by manipulating 
compromised machines to launch an attack, 
such as the exploitation of mobile devices as 
botnets [11]. It is worth noting that a transmis-
sive attack can be more insidious due to inher-
ent configurability of electronic devices carried 
by a user (e.g., programmable in-body health 
devices or wearable mobile devices), which 
enables malware propagation even when typical 
communication devices such as cell phones and 
laptops are prohibited.

In addition to hidden identity, another 
appealing advantage of the transmissive attack 
is that the adversary need not know the com-
plete network topology to accomplish the attack. 
All the adversary needs to do is release a trans-
missive malicious code and then wait for the 
malicious code to propagate to the target due 
to its transmissive nature. In practice a trans-
missive attack can be accomplished simply by 
devising a Trojan virus designed to be operated 
in the stealthy transmissive mode during prop-
agation and activated when reaching the target. 
Advanced transmissive attacks can camouflage 
normal user/network activities to elude intrusion 
detection or system monitoring, thereby incur-
ring severe threats to security and privacy. 

One of the most notable targeted attacks is 
the Stuxnet attack discovered in 2010. Stuxnet 
is designed to target a specific version of indus-
trial control systems in a surreptitious manner, 
whereas traditional worms often aim to infest 
as many hosts as possible in a short time period. 
Stuxnet thus exhibits several distinguishing char-
acteristics compared to traditional worms: each 
Stuxnet worm only replicates itself for at most 
three times; it is programmed to self-destruct on 
a day in 2012; it can stealthy propagate via car-
riers (i.e., vulnerable Windows computers) with-
out showing any symptoms, and only unpack its 
malicious payload when reaching a target; mul-
tiple zero-day vulnerabilities are used. Although 
performing a targeted attack may be expensive, 
and indeed Stuxnet is believed to be state-spon-
sored malware due to its unprecedented level of 
sophistication, more and more Stuxnet succes-
sors (e.g., dudu and Flame) demonstrate how 
far an adversary is willing to go for high-value 
targets.

Stuxnet is one kind of advanced persistent 
threat (APT), which can be seen as one specific 
case of transmissive attack. An APT possesses 
the feature of specificity in targets. Although the 
feature of heterogeneity in community paths is 
not mandatory for an APT, it would shorten the 
process to approach the targets if heterogeneous 
community paths are considered. In 2013, Man-
diant3 summarized the attack life cycle of APT:
1.	Initial compromise
2.	Establish foothold
3.	Escalate privileges
4.	Internal reconnaissance
5.	Move laterally
6.	Maintain presence
7.	Complete mission

Figure 1. Illustration of transmissive attacks and their propagation paths. 
Transmissive attacks exploit various communication resources for propa-
gation in order to reach the target. This diagram shows some examples of 
propagation paths that lead to the target.
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2 Although in recent years epidem-
ic-like information propagation has 
been well studied in the commu-
nications society in the context of 
“epidemic routing,” where packets 
are transmitted in a store-and-for-
ward fashion in intermittently con-
nected networks, little is known on 
how to apply these well developed 
analysis tools [7–10] to model 
transmissive attacks and beyond. 
 
3 APT1: Exposing One of China’s 
Cyber Espionage Units, http://
intelreport.mandiant.com/}
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An APT attack often loops through steps 3 to 6 
until it reaches the specific target. These steps 
are also applicable to transmissive attacks.

To launch a successful transmissive attack, an 
attacker would also like to increase heterogene-
ity in community paths (e.g., by exploiting diverse 
vulnerabilities). The statistics of recently report-
ed vulnerabilities (Table 1) shows the numbers 
are consistently increasing for most platforms 
and applications, even for modern mobile and 
wearable devices. Consequently, various activities 
and media, including web downloads, document 
reading, e-mail reading, short messages deliv-
ery, Wi-Fi access, Bluetooth access, and NFC 
contacts, can be used together to deliver mali-
cious payloads and approach targets. By lever-
aging these existing vulnerabilities, an attacker 
can even launch transmissive attacks in the back-
ground and be invisible to a user.

For example, in July 2015, an unprecedented 
vulnerability in the Android system called Stage-
fright was revealed by the cyber security firm 
Zimperium.4 Stagefright leverages the vulnerabil-
ity of the media library to access users’ Android 
devices through a simple multimedia message 
service (MMS) without users’ awareness.5,6,7 As 
approximately 80 percent of mobile devices use 
Android systems, nearly 1 billion devices are 
potential victims.3,4,5 By viewing mobile users 
using different operating systems as hosts with 
different levels of immunity to a virus, the Stage-
fright vulnerability behaves like host specifi city in 
epidemiology, as it can compromise users using 
Android systems.

overvIew of epIdemIc models
Here we provide an overview of classical epi-
demic models that have been applied to com-
munication systems, particularly for modeling 
information dissemination, malware propagation, 
and developing the associated control methods.8

Following terminologies from biology and 
epidemiology, each device in a communication 
system can be categorized into a few states rep-
resenting its status. The main utility of such an 
abstraction is that one can leverage epidem-

ic models to simplify complicated interactions 
among individuals and extract collective informa-
tion for large-scale analysis and prediction, for 
example, tracking pandemic spread patterns and 
predicting their outbreaks in terms of the infect-
ed population. A popular analogy is that each 
device is either in the susceptible (S), infected (I), 
or recovered (R) state, known as the SIR model.

For epidemic modeling of normal informa-
tion dissemination dynamics, including routing 
in communication networks, rumor, news spread 
in social networks, and so on, an infected indi-
vidual means he/she carries a certain message 
(e.g., a data packet) to be delivered, a suscepti-
ble individual means he/she does not carry that 
message but can potentially be infected, and a 
recovered individual means he/she is immune 
to the message and hence ignores the message 
upon reception; for example, in a cooperative 
relay-assisted network a device in the recovered 
state will refuse to receive or forward the packet.

For epidemic modeling of malicious codes 
propagation dynamics, such as privilege escala-
tion or system vulnerability leakage, an infect-
ed individual means he/she is compromised by a 
malicious code and is being leveraged as a warm 
bed for further propagation or attack (e.g., a bot-
net). A susceptible individual means he/she is not 
compromised, but is still vulnerable to the mali-
cious code. A recovered individual means he/she 
is free of the threats incurred from the malicious 
code (e.g., securing one’s devices via frequent 
security patch updates).

The following paragraphs introduce three 
basic epidemic models and relevant control tech-
niques.

sI model

The SI model assumes each individual is either 
in the susceptible or infected state. It can be 
used to estimate the reception performance of a 
broadcasting protocol or the dynamics of a mali-
cious code. In [4], the authors show that infor-
mation dissemination in a fully mixed network of 
dynamic topology and opportunistic links, such 
as a mobile contact-based network that possesses 
time-varying traces due to mobility and temporal 
connections due to opportunistic contacts, can 
be captured by an SI model. In [12], the authors 
show that the trends of self-propagating Internet 
worms such as Code Red and Slammer can be 
successfully predicted by SI models. In [5], the 
authors use the SI model to formulate malware 
propagation in a hybrid network composed of a 
social network and a proximal network, where 
malware can leverage delocalized links (e.g., 
through MMS) and localized links (e.g., through 
Bluetooth) for propagation.

sIs model

Similar to the SI model, the SIS model also 
assumes that each individual is in either the sus-
ceptible or the infected state. The difference is 
that an SIS model allows an individual to tran-
sition from the infected state to the susceptible 
state. SIS models can be well mapped to the 
formulation of a typical two-state Markov chain 
where the steady-state behavior of the entire sys-
tem is used for analysis. The utility of SIS models 
can be found in formulating recurrent network 

4 https://www.zimperium.com/

5 http://fortune.com/2015/07/27/
stagefright-android-vulnerabili-
ty-text/

6 http://www.forbes.com/sites/
thomasbrewster/2015/07/27/
android-text-attacks/

7 As quoted from Zimperium 
chief technology offi cer Zuk 
Avraham, “These vulnerabilities 
are extremely dangerous because 
they do not require that the victim 
take any action to be exploited. 
Unlike spear-phishing, where the 
victim needs to open a PDF fi le 
or a link sent by the attacker, this 
vulnerability can be triggered while 
you sleep. Before you wake up, 
the attacker will remove any signs 
of the device being compromised 
and you will continue your day as 
usual — with a trojaned phone.” 
Source: http://venturebeat.
com/2015/07/27/research-
ers-fi nd-vulnerability-that-af-
fects-95-of-android-devices

8 Due to reference count limita-
tions only a subset of related works 
are introduced in this section. 
Interested readers can refer to 
[7–10, references therein] for more 
details.

Table 1. Statistics of vulnerabilities identifi ed on 
popular applications and platforms.

Number of vulnerabilities

Application platforms 2013 2014 2015

Adobe Acrobat Reader 66 44 129

Apple iPhone OS 90 120 375

Apple Mac OS X 65 135 384

Apple WatchOS — — 53

Google Android 7 11 130

Microsoft Internet Explorer 129 243 231

Microsoft Offi ce 17 10 40

Microsoft Windows 7 100 36 147

Linux Kernel 189 133 77
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behaviors, such as the trends of receiving spam 
mails, or information dissemination in an evolv-
ing environment with system reconfi guration fac-
tors. In [13], the authors integrate the SIS model 
with queueing theory to study malware propaga-
tion dynamics in a dynamic network.

sIr model

The SIR model is a widely used model in ener-
gy-constrained systems (e.g., a wireless sensor 
network) or communication systems with control 
capabilities over information delivery (e.g., a con-
fi gurable routing protocol). An infected individ-
ual can transition from the infected state to the 
recovered state when certain events occur; for 
example, a sensor stops forwarding packets due 
to battery drain. A susceptible node can transition 
to the recovered state when certain mechanisms 
are activated; for example, a computer is no lon-
ger vulnerable to a malicious code after installing 
the corresponding security patch or upgrading 
its operating system. In [14], the SIR model is 
used to study the vulnerability of broadcast pro-
tocols in wireless sensor networks. In [7, 8], the 
SIR model is used to analyze the performance of 
several protocols for epidemic routing.

control technIQues

One major advantage of using epidemic mod-
els for modeling dynamics of information deliv-
ery or malware propagation lies in the fact that 
their analytical expressions closely resemble cou-
pled state equations appearing in control theo-
ry, which allows one to quantify a cost function 
of interest and evaluate the performance of a 
control strategy. A commonly used cost function 
rooted in various applications is the accumulated 
infected population within a time interval. For 
instance, in store-and-forward routing schemes 
such as epidemic routing, the accumulated 
infected population from the time when a source 
releases a packet to the time when the packet is 
no longer carried by any individual is considered 
as a cost function for data transmission. It can be 
interpreted as the system-wise buffer occupancy 
for data transmission since all infected devices 
need to keep the packet in their own buffer until 
the destination successfully receives the packet. 

Notably, although epidemic routing enables 
communications in intermittently connected net-
works, its spreading nature inevitably induces 
additional system burden, especially for buffer 
occupancy. In [7], the authors propose two strat-
egies for controlling buffer occupancy, which we 
call the global timeout scheme and the antipack-
et dissemination scheme. In the global timeout 
scheme, each infected individual drops the pack-
et in its buffer when the global timer expires. In 
the antipacket dissemination scheme, as motivat-
ed by vaccination from immunology, upon packet 
reception the destination releases an antipacket 
as an indicator of acknowledgment (ACK) and 
asks every encountered individual to forward 
the antipacket so that infected nodes can erase 
the obsolete packet from its buffer, and suscep-
tible nodes can be prevented from receiving the 
already delivered packet, and hence achieve buf-
fer occupancy reduction. 

In [9], the authors consider time-dependent 
control capability of SIR models in hybrid net-

works, where the control ability is proportional 
to the elapsed time; that is, the ability to restrain 
malware propagation increases with the time 
spent in reverse-engineering its operations. An 
optimal control strategy based on dynamic pro-
gramming is proposed for solving the optimal 
time to implement the control strategy (analo-
gously releasing the antidotes) in order to bal-
ance the trade-offs between effectiveness and 
consequences.

connectIng the dots:
evAluAtIng trAnsmIssIve AttAcks vIA 

epIdemIc models
Although transmissive attacks can be a serious 
threat to cyber security, they are often accom-
panied by an additional price compared to tra-
ditional attack schemes. Notably, their spreading 
nature and self-propagating patterns enhance the 
risk of exposure, and hence the attacks may be 
more likely to be detected. Generally speaking, 
while an attacker can accelerate the processes of 
reaching the target by compromising additional 
hosts, such an increased level of malicious activi-
ties becomes easily identifi ed, thereby jeopardiz-
ing the purpose of the attack. To this end, there 
is a trade-off between the probability of a suc-
cessful attack and the risk of being detected due 
to excessive exposure.

To quantify this trade-off between attack suc-
cess and risk of exposure for transmissive attacks, 
we propose to use epidemic models for analysis. 
The risk of exposure is the accumulated infected 
population (i.e., accumulated number of com-
promised hosts) from time 0 when the adversary 
launches a transmissive attack to time T when 
the target is comprised, or the time when the 
adversary decides to abort the attack, as the lon-
ger the duration of a host being compromised 
renders an attack more prone to detection. The 
attack success at a time instance t is defined as 
the probability of successfully accessing the tar-
get between time intervals 0 and t.

For further illustration, we consider the scenar-
io where the adversary adopts the global timeout 
scheme for transmissive attacks as his/her control 
technique to reduce the risk of exposure. A glob-
al timer is set since the attacker launches a trans-
missive attack, and upon global timer expiration 
all malware residing in the compromised hosts 
will erase their traces via complete self-deletion, 
whether the attack is successful or not, so as to 
allow the adversary to constrain malware propa-
gation and alleviate exposure. 

Under the global timeout scheme, an interest-
ing question that naturally arises is: what is the 
optimal global timeout value TG such that the 
attack success at time TG is no less than a certain 
value (e.g., 80 percent) while the risk of expo-
sure can be minimized? Partial answers to this 
question have been given in the contexts of min-
imizing the system buffer occupancy while simul-
taneously guaranteeing end-to-end data delivery 
reliability between a source-destination pair for 
epidemic routing [15], where the data delivery 
reliability and buffer occupancy are proven to be 
associated with the accumulated infected popula-
tion under the SIR model [8]. 

In particular, if the mobility pattern follows a 
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homogeneous mixing mobility assumption, such 
as the random waypoint model or the random 
direction model, a closed-form expression of 
optimal global timeout value is provided in [15] 
in which, given a data delivery reliability guaran-
tee, the optimal global timeout value that min-
imizes the system buffer occupancy depends on 
the initially infected population and the pairwise 
meeting rate. This suggests that if mobile bot-
nets (i.e., several initially compromised hosts) 
are utilized to launch a transmissive attack, the 
global timer should be set smaller than that of 
a single seed to minimize the risk of exposure. 
Similarly, the global timer should decrease when 
the pairwise meeting rate is higher due to more 
frequent encounters facilitating malware propa-
gation. Moreover, an interesting finding in [15] 
is that the optimal buffer occupancy grows expo-
nentially with the data delivery reliability. Anal-
ogously, for transmissive attacks the exponential 
growth rate suggests that the risk of exposure can 
be significantly amplified if an adversary desires 
higher attack success. 

It is also proven in [15] that when adopting 
the optimal global timer, the per-user buffer 
occupancy does not depend on the total popula-
tion for epidemic routing. This suggests that for 
transmissive attacks, the risk of exposure for a 
single host can be controlled to a certain extent 
such that its local risk does not increase with the 
total host number.

Experiments and Simulations
In this section we conduct several simulations 
and experiments as a first step toward the anal-
ysis of transmissive attacks using epidemic mod-
els. In particular, we investigate the trade-offs 
between the attack success and risk of expo-
sure by simulating global-timeout-value-enabled 
transmissive attacks in mobile networks with two 
widely adopted mobility models: the random 
waypoint (RWP) mobility model and the random 
direction (RD) mobility model. We also evalu-
ate the effect of propagation path diversity of 
a mobile social network on transmissive attacks 
based on mobile and social interaction patterns 
extracted from real-life datasets.

Simulation of 
Transmissive Attacks in Mobile Networks

We simulate the traces of a mobile network 
of N mobile users moving around in a wrap-
around L   L square area. Any pair of users 
can exchange information for communication 
when they are within distance r of each other. 
For the RWP mobility model each user selects 
a destination at random and travels to the des-
tination at a constant speed v. Similarly, for the 
RD mobility model each user selects a direc-
tion at random and travels at a constant speed 
v. For both models the speed v is randomly and 
uniformly drawn from the interval [vmin, vmax]. 
Initially (at time 0), one user is compromised to 
launch a transmissive attack, and the target is 
selected at random.

Figures 2 and 3 display the attack success and 
the risk of exposure with respect to the global 
timeout value TG, respectively. Given TG, the 
attack success is defined as the fraction of sim-
ulated transmissive attacks that successfully 

approach the target prior to time TG among all 
trials, and the risk of exposure is defined as the 
accumulated compromised population divided by 
the total population N. The SIR epidemic model 
proposed in [15] is used for performance com-
parison. The successful rate is the probability of 
infecting a particular host, and the risk of expo-
sure is evaluated using the accumulated infected 
population.

It can be observed that the global timeout 
value TG indeed governs the performance of 
both attack success and risk of exposure. The 
simulation results also validate the trade-offs 
between these two metrics as the enhancement 
of attack vulnerability often leads to an increased 

Figure 2. Successful rate for transmissive attacks with respect to varying 
global timeout value TG in mobile networks simulated by RD and RWP 
mobility models. The system parameters are N = 100 mobile users, r = 0.1 
km, L = 2.5352 km, vmin = 4 km/h, vmax = 10 km/h, and pairwise meeting 
rate = 0.37043. The results are averaged over 10,000 trials.
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risk of exposure, and vice versa. For example, to 
enhance the attack success from 30  percent (TG 
= 10) to 90  percent (TG = 20), the risk of expo-
sure needs to be amplified 10 times. Notably, the 
predicted results from the epidemic model can 
successfully capture the trends of these two met-
rics. An immediate utility is that an adversary can 
use the epidemic model to determine the optimal 
global timeout value that guarantees the attack 
success while simultaneously minimizing the risk 
of exposure (e.g., selecting TG = 25 such that 
the attack success is no less than 95 percent). 
Moreover, a defender can also utilize the epi-
demic model to evaluate a system’s vulnerability 
without conducting time-consuming simulations.

Experiment of Transmissive Attacks in 
Mobile Social Networks

To investigate the impact of propagation path 
diversity on transmissive attacks, we use the 
CRAWDAD mobile-social interaction traces9 to 
simulate a transmissive attack. The purpose of 
this experiment is to study the consequences of 
transmissive attacks that are capable of propa-
gating through social contacts (e.g., via MMS) or 
proximity contacts (e.g., via Bluetooth). In such 
a mobile social network the malware can propa-
gate from one compromised user to another user 
with probability of success ps via the social prop-
agation path if these two users are social contacts 
(i.e., there is an edge between these two users in 
the corresponding social graph). Similarly, the 
malware can propagate from one compromised 
user to another user with probability of success 
pl via the proximity propagation path if these two 
users are within a physical contact distance.

Figures 4 and 5 display the attack success and risk 
of exposure for transmissive attacks in the mobile 
social network, respectively.  It can be observed that 
the inclusion of social propagation paths can sig-
nificantly enhance the attack success. For example, 
after 30 hours since launching a transmissive attack, 
the attack success in utilizing both social and mobile 
propagation paths can be doubled compared to the 
attack success of only exploiting mobile propaga-
tion paths. However, the induced risk metric is also 
amplified, as shown in Fig. 5. 

Additional experiments of different parame-
ter configurations show similar trends in attack 
success and risk of exposure, which are discussed 
in the supplementary file.1 These results suggest 
that propagation path diversity can facilitate 
transmissive attacks at the price of potentially 
amplified exposure. In addition, how current epi-
demic models can be improved to model trans-
missive attacks in such a heterogeneous network 
is an active research area.

Some Ongoing Challenges and 
Open Research Questions

Here we discuss several ongoing challenges and 
open research questions related to transmissive 
attacks.

Lateral movement detection and prevention: 
Unlike disruption attacks (e.g., denial of service), 
which often cause distinguishable anomalous 
activities, lateral movement attacks (e.g., privilege 
escalation that insidiously acquires user creden-
tials) are difficult to detect. Transmissive attacks 
fall into one category of lateral movement attacks 
due to their stealthy transmissive nature. If detect-
ing lateral movement is implausible, one may shift 
attention to designing a resilient cyber system that 
can constrain the damage induced by such attacks.

Transmissive attacks in a network of networks: 
A network of networks (NoNs) is an intuitive expla-
nation of modern communication systems with 
intrinsic layered structures and heterogeneous net-
works. The layers of the Internet architecture can 
be operated by different protocols, and a device 
can have multiple communication resources (e.g., 
cellular, WiFi, and Bluetooth modules).

As horizontal malware propagations within a 
single layer/system can be straightforward by lever-

Figure 4. Successful rate for transmissive attacks in a mobile social network: 
exploiting both social and mobile propagation paths can significantly 
improve the possibility of approaching the target. The propagation param-
eters ps = pl = 0.05, and the results are averaged over 10,000 trials.
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Figure 5. Risk metric corresponding to Fig. 4: the accumulated infected 
population with respect to time. The results show clear trade-offs between 
attack success and risk of exposure.
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aging similar vulnerabilities, vertical malware prop-
agations traversing different layers/systems can 
be more difficult due to lack of common vulner-
abilities or implementation of additional security 
rules. In terms of bio-inspired attacks, transmissive 
attacks that are self-evolving and adaptive to the 
NoN environment can be a vital threat.

Data-driven inference for attack and defense: 
In a data-rich era, our cyber footage is every-
where and easy to track. Both attackers and 
defenders should make use of available data 
collected from different sources to infer vul-
nerabilities in a system. Notably, modern tech-
nology enables an adversary to optimize his/her 
attack strategy based on the inference results 
from collected data prior to launching a trans-
missive attack, known as the inference attacks. 
For instance, personal trace information such as 
GPS signals or locations revealed by online social 
networking activities can be directly observed or 
indirectly inferred from user-centric data.

Evolutionary resilience of dynamic systems: 
In many cases the underlying communication sys-
tem where a transmissive attack takes place is an 
ever changing system due to variations in time, 
traffic flows, evolution of communication tech-
nology, and so on. Therefore, a general notion of 
resilience for such a dynamic system is necessary 
to quantify network stability that can vary with 
time, which we call evolutionary resilience. Notably, 
biology models such as ecological systems, pred-
ator-prey models, and evolutionary game theory 
that target evolutionary stability in time-varying 
coupled systems may be well mapped to analyze 
transmissive attacks in dynamic systems.

conclusIon
This article introduces an emerging attack pattern 
called transmissive attack that leverages diverse 
communication paths to approach a target and 
accomplish its task. Inspired by biology, we pro-
vide an overview of commonly used epidemic 
models for communication systems, and connect 
the dots between transmissive attacks and epidem-
ic models. We perform simulations via two widely 
used mobility models and conduct experiments in 
mobile social networks to demonstrate the utility 
of epidemic models for assessing attack success 
and risk of exposure, and we also discuss some 
ongoing research challenges and open research 
questions related to transmissive attacks.
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